In vivo selection of antifolate-resistant transgenic hematopoietic stem cells in a murine bone marrow transplant model.
نویسندگان
چکیده
Currently, low levels of stable gene transfer into hematopoietic tissues of large animals and humans continues to limit the clinical application of gene therapy. One strategy for overcoming this problem is to selectively expand, in vivo, the population of successfully gene-modified cells. Recent work has shown that nucleoside transport inhibition in combination with antifolates can be used to select in vivo for hematopoietic stem cells expressing drug-resistant dihydrofolate reductase (DHFR). In this study we investigated whether trimetrexate (TMTX) and the nucleoside transport inhibitor prodrug nitrobenzylmercaptopurine ribose phosphate (NBMPR-P) can be used to select for tyr22-variant DHFR expressing transgenic hematopoietic cells in a murine bone marrow transplant model. Our results indicate that 40 mg/kg TMTX and 20 mg/kg NBMPR-P can be used in combination to expand transgene-positive progenitor cells 3- to 4-fold immediately following drug administration. In addition, long-term progenitor populations were expanded 2- to 3-fold in primary recipients, to approximately 5 months following drug administration. Secondary transplants conducted with marrow from primary recipients 5 months following drug administration revealed a statistically significant selective expansion of transgene-positive cells in the spleens and peripheral blood of these animals. No such expansion was observed in groups of mice treated with TMTX alone or NBMPR-P alone. We conclude that TMTX + NBMPR-P can be used to selectively expand transgenic tyr22-variant DHFR expressing murine hematopoietic stem cells in vivo.
منابع مشابه
A Review of Procedures Involved in Human Umbilical Cord Blood Banking and Transplantation
Cord blood hematopoietic stem cells are widely used as an alternative source for hematopoietic stem cells transplant. Increasing rate of patients who need hematopoietic stem cells transplant and many advantages of cord blood in comparison to bone marrow hematopoietic stem cells, have promoted banking of cord blood units. Cord blood banking requires accurate steps in donor selection, cord blood ...
متن کاملتاثیر آشیانههای جفتی شبیهسازی شده با داربست پلی لاکتیک اسید در تکثیر سلولهای بنیادی خونساز مشتق از بافت جفت انسانی
Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...
متن کاملCFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells
The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملAssay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 300 1 شماره
صفحات -
تاریخ انتشار 2002